AERZEN ВИНТОВЫЕ КОМПРЕССОРЫ

Винтовые компрессоры AERZEN VRa для технологических газов в составе модульных одно- и многоступенчатых установок для сухого сжатия.

КОМПРЕССОРЫ AERZEN: НЕОТЪЕМЛЕМАЯ ЧАСТЬ ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА

Одно- и многоступенчатые компрессорные установки AERZEN для технологических газов работают на предприятиях химической, нефтехимической, перерабатывающей и энергетической промышленности, а также других производствах по всему миру.

Винтовые компрессорные установки выпускаются как в стандартных, так и в специализированных исполнениях.

В каждой отрасли компрессорные установки разрабатываются индивидуально. В основе каждой установки - стандартный компрессорный блок VRa, а также дополнительное и вспомогательное оборудование, предназначенное для решения конкретных задач. При этом проектирование и изготовление выполняются в соответствии с нормативными требованиями и техническими условиями различных промышленных организаций и контролирующих органов (например, API или национальными стандартами).

ПОСЛЕДНИЕ ДОСТИЖЕНИЯ ТЕХНОЛОГИИ СЖАТИЯ. ВИНТОВЫЕ КОМПРЕССОРЫ И ДОПОЛНИТЕЛЬНОЕ ОБОРУДОВАНИЕ AERZEN ДЛЯ ТЕХНОЛОГИЧЕСКИХ ГАЗОВ.

ТЕХНОЛОГИЯ СУХОГО СЖАТИЯ ОБЛАДАЕТ ШИРОКИМИ ВОЗМОЖНОСТЯМИ ПРИМЕНЕНИЯ.

В рабочей камере полностью отсутствует контакт металлических поверхностей - как между роторами, так и между ротором и корпусом. Благодаря идеальной синхронизации зубчатых колес редукторов работающие роторы не касаются друг друга. Поэтому в распределительных камерах отсутствует смазка, загрязняющая сжимаемую среду.

Сферы применения

Винтовые компрессоры AERZEN применяются не только в химической промышленности, но и в системах импульсного воздуха, промышленных холодильных агрегатах, выпарных установках, в горнодобывающей промышленности и в черной металлургии. Они совместимы практически с любыми газами: аммиаком, аргоном, этиленом, ацетиленом, бутадиеном, сероводородом, природным, факельным, колошниковыми и болотными газами, гелием, газами обжиговых и коксовых печей, моноксидами углерода и азота, любыми смесями углеводородных газов, метаном, пропаном, пропиленом, дымовыми и сырыми газами, сернистым ангидридом, стиролом, винилхлоридом и водородом.

Ограничения

Сфера применения винтовых компрессоров ограничена рабочими режимами давления, температуры и скорости. В целом, механическая нагрузка компрессоров допускается при

перепадах давления до 12 бар. В индивидуальных случаях с особыми эксплуатационными требованиями возможна работа при перепаде давления до 25 бар. Максимально допустимый коэффициент сжатия (т = p2/p1) в пределах одной ступени, не приводящий к росту температуры свыше допустимого предела 250 °C, в значительной мере определяется удельной теплоемкостью сжимаемого газа. Так, для с = 1,4 максимальный коэффициент сжатия составляет ок. 4,5, для с = 1,2 - 10. Многоступенчатые установки позволяют получать максимальное расчетное давление нагнетания до 53 бар. В вакуумных системах абсолютное разрежение может достигать 0,9. Также в винтовых компрессорах технологических газов предусмотрена система промежуточного охлаждения. Скорость варьируется в пределах 2 000 - 20 000 об/мин в зависимости от размеров установки. При этом максимальная окружная скорость ротора для газов с низким удельным весом, являющаяся функцией скорости главного ротора, равной 50-130 м/с, составляет 150 м/с.

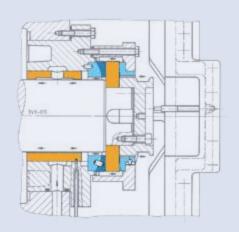
Техническая схема

Корпуса компрессоров небольших моделей имеют разъемную со стороны всаса конструкцию. Цилиндр - уменьшенной длины и увеличенного диаметра. В моделях большего размера корпус разъемный также и по горизонтали для упрощения сборки. Роторы и валы изготавливаются из кованой или нержавеющей стали. Принципиально, в установках сжатия технологических газов поток среды направлен снизу вверх, что обеспечивает введение в поток жидкости, зачастую необходимой при работе с загрязненными или полимеризованными газами. В зоне уплотнения предусмотрены точки подвода буферного газа и сброса уплотняющего/инертного газа.

Профиль ротора

Винтовые компрессоры AERZEN для технологических газов имеют роторы анасимметричного профиля. Схема с 4-гребневым главным и 6-гребневым вспомогательным роторами обозначается как «4+6». Данная схема позволяет использовать роторы с большим диаметром сердечника, способные выдерживать значительные перепады давления при высоком объемном КПД.

Подшипники


Винтовые компрессоры с подшипниками скольжения идеально подходят для работы в условиях высокого давления на повышенных оборотах ротора.

Для радиальных нагрузок применяются неразъемные подшипники. В качестве осевых применяются сферические сегментные подшипники, саморегулирующиеся по отклонениям ротора. Опорный осевой подшипник нагружается только в момент пуска и торможения установки.

Вспомогательный ротор

Главный ротор

Система подачи масла

Как правило, применяются раздельные системы подачи масла. В зависимости от конкретных условий эксплуатации в состав системы включаются находящиеся под давлением (до 16 бар) либо оборудованные дыхательными клапанами резервуары, обеспечивающие хранение масла на протяжении 2-8 минут. В каждом резервуаре предусматривается электрический либо паровой подогреватель масла, а также регулятор уровня. Для подачи масла применяются механические насосы с приводом от мотор-редуктора, электродвигателя или турбины. Для охлаждения и очистки масла предусмотрены сдвоенные холодильники и фильтры. Система подачи масла проектируется с учетом эффективной подачи смазочного масла под давлением в радиальные и осевые подшипники как компрессора, так и редуктора для обеспечения оптимальной работы смазываемых и охлаждаемых маслом механических уплотнений.

Soda Sanayi, г. Мерсин (Турция), установка сжатия отходящих газов печи обжига известняка VRO 836 L, объем всасывания 45 000 м³/ч, сжатие в диапазоне 0,85 - 3,5 бар (абс.). Гидроизолированное лабиринтное уплотнение с графитовыми кольцами.

ПРОФЕССИОНАЛИЗМ В ДЕТАЛЯХ. ВАРИАНТЫ СИСТЕМЫ УПЛОТНЕНИЯ.

Для полной изоляции газовой стороны от смазываемой зоны применяются различные системы уплотнения, описание которых приведено ниже. В зависимости от характеристик газа, технологические установки могут быть укомплектованы следующими специализированными системами уплотнения.

В распределительной камере:

- а) лабиринтное уплотнение с графитовыми кольцами (сухое)
- b) лабиринтное уплотнение с графитовыми кольцами (гидроизолированное)
- с) одноступенчатое механическое уплотнение с масляной герметизацией и графитовыми кольцами на входе
- d) двухступенчатые механические уплотнения
- е) тандемное механическое уплотнение с газовой герметизацией

На приводном валу:

- а) лабиринтное уплотнение
- b) двухступенчатое механическое уплотнение

Уплотнения распределительной камеры:

а) лабиринтное уплотнение с графитовыми кольцами

Графитовые лабиринтные уплотнения с точками разгрузки и подсоединения уплотняющего газа предназначены для чистых нейтральных газов, утечка которых, даже в сочетании с уплотняющим газом, возможна в масляную камеру, в атмосферу или в трубопроводы остаточного газа. Давление сбрасывается через плавающие в истекающем газе графитовые кольца уплотнения. Материал: сталь обыкновенная либо нержавеющая / графит, усиленное кольцо.

b) лабиринтное уплотнение с графитовыми кольцами (гидроизолированное)

В данных уплотнениях часть воды попадает в рабочую камеру, а остальная - выводится наружу, после чего возвращается обратно в систему уплотнения. Помимо уплотняющей функции, вода в цилиндре также охлаждает и очищает передаваемый газ. Далее эта вода собирается и, после очистки, используется повторно. При этом утечка газа в окружающую среду исключается. Кроме того, предусмотренный между водяным и масляным уплотнением каплеуловитель исключает попадание воды в масляную систему. Материал: сталь обыкновенная либо нержавеющая / пропитанный графит, усиленное кольцо.

с) одноступенчатое механическое уплотнение с масляной герметизацией и г рафитовыми кольцами на входе

Комбинированные плавающие механические уплотнения объединяют в себе преимущества обеих вышеописанных систем. Они, в частности, применяются в установках с высоким перепадом давления.

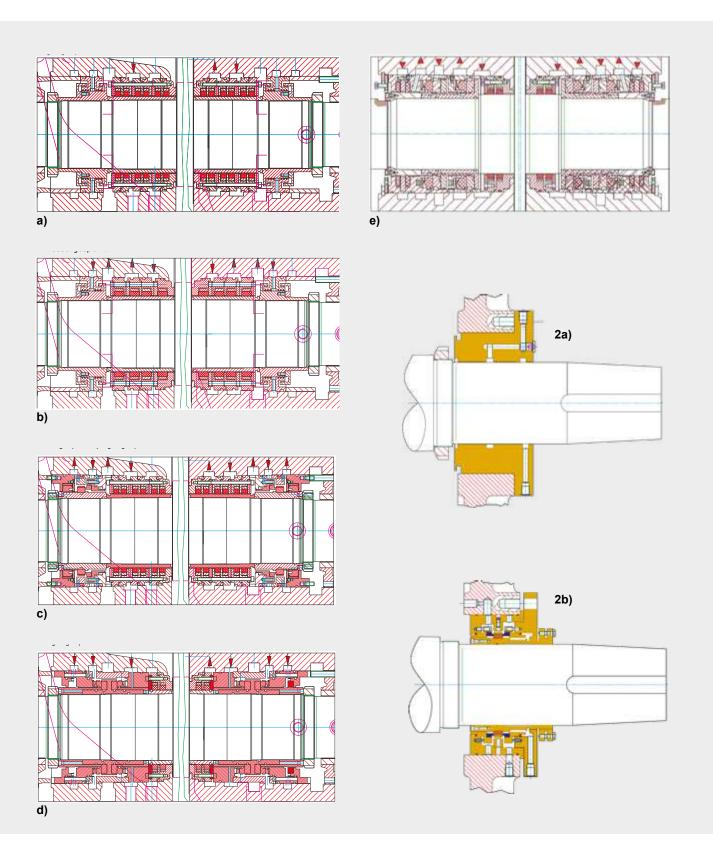
Материал: нержавеющая сталь/графит - карбид вольфрама.

d) двухсторонние механические уплотнения с газовой, масляной либо водяной герметизацией

Применяются в установках с высокими коэффициентом сжатия и давлением нагнетания. В качестве герметизирующей среды может использоваться азот либо жидкость.

Такие уплотнения полностью исключают утечки газа и сводят к минимуму утечки герметизирующей жидкости.

е) тандемное механическое уплотнение с газовой герметизацией


Тандемные механические уплотнения применяются в случаях, когда утечка технологического газа в атмосферу, равно как и смешение уплотняющего и технологического газов, категорически не допускаются.

Уплотнение приводного вала:

2а) лабиринтное уплотнение

2b) двухступенчатые механические уплотнения

Приводные валы винтовых компрессоров и турборедукторов оборудуются лабиринтными уплотнениями при наличии открытой системы подачи масла либо двухступенчатыми механическими уплотнениями - при наличии централизованной подачи масла. В последнем случае уплотнения подсоединяются к напорным трубопроводам системы.

ПОДТВЕРЖДЕННАЯ БЕЗОПАСНОСТЬ -ГАРАНТИЯ КАЧЕСТВА AERZEN

Перед отправкой заказчику компрессоры на протяжении нескольких часов проходят эксплуатационные испытания, проводимые поступенчато с работой от стендового двигателя. По желанию заказчика предоставляются акты проверок и испытаний.

Привод

Приводится в действие электродвигателем либо паровой/ газовой турбиной. Сопряжение осуществляется через цилиндрическую зубчатую либо прямую передачу.

Редукторы и синхронизирующие механизмы

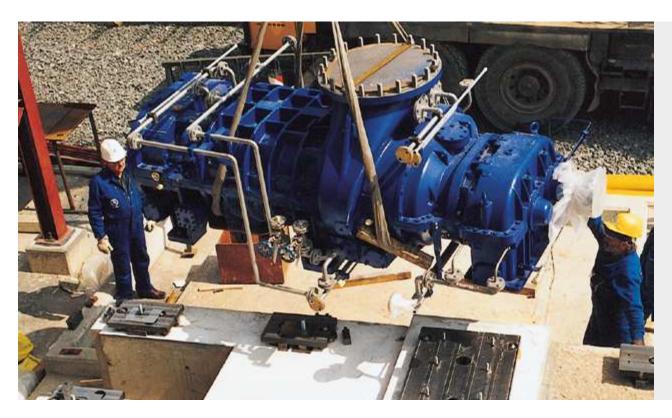
Унифицированные повышающие редукторы с близкими передаточными числами обеспечивают практически неограниченный рабочий диапазон объемного расхода. Они могут применяться как в качестве насадных, так и присоединяемых узлов. В системах с двумя и более ступенями применяются турборедукторы с одним приводным и двумя выходными валами. Касание главного и вспомогательного роторов исключается благодаря применению механизмов синхронизации, для чего боковой зазор механизмов должен быть настроен на заведомо меньшее значение, чем у роторов.

КИПиА

Контроль и регистрация рабочих параметров осуществляются датчиком давления и резистивным термометром. При этом регистрируемые ими значения выводятся непосредственно на пульт управления.

Для КИПиА используется аппаратная база зарекомендовавших себя производителей данного оборудования.

Материалы


Материалы установки подбираются с учетом выполняемых ею задач.

Корпус: высокопрочный чугун, стальное литье,

нержавеющая сталь

Роторы: углеродистая и нержавеющая сталь

Зубчатые колеса: цементированная сталь Уплотнения: см. соответствующий раздел.

Kaucuk A.S., г. Кралупы (республика Чехия). Сборка компрессора технологических газов VRa 736 L

Охлаждение

Корпус компрессора имеет конвективное охлаждение и не требует подвода охлаждающей воды.

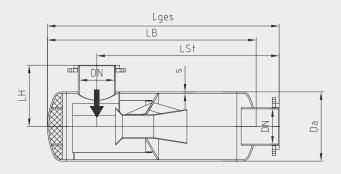
Регулировка

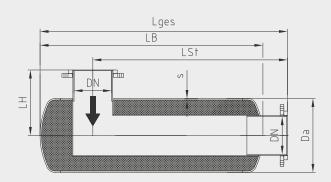
При работе от двигателя с постоянной скоростью (электродвигателя) регулировка объемного расхода осуществляется следующим образом: при периодическом режиме работы - обводным клапаном с регулятором переполнения; в многоступенчатых установках - регулятором промежуточного давления. При динамическом изменении объемного расхода возможна работа в ограниченном диапазоне скоростей (частотнорегулируемый привод, турбина).

Вибрация и шумовой фон

В конструкции отсутствуют элементы, совершающие возвратно-поступательное движение. Все динамические элементы совершают только вращательное движение и имеют балансировку, исключающую влияние силы тяжести.

Поступающий в трубопроводы уровень энергии звуковой волны значительно снижается глушителями особой конструкции, а пульсация - компенсаторами, устанавливаемыми по отдельному запросу. При наличии особых требований к шумопоглощению компрессорная установка может быть укомплектована шумозащитным кожухом, размеры и конструкция которого оговариваются индивидуально.


Особые исполнения


Помимо применения особых материалов, разумеется, существует возможность индивидуальной доработки стандартных моделей вплоть до индивидуального проекта, например, полностью закрытой установки с повышенным давлением на всасе для нейтральных газов.

Конструкция корпуса редуктора и масляной системы позволяют выдерживать перепад давления до 16 бар. Для вакуумных систем же требуется применение специализированных уплотнений.

Нормативные документы

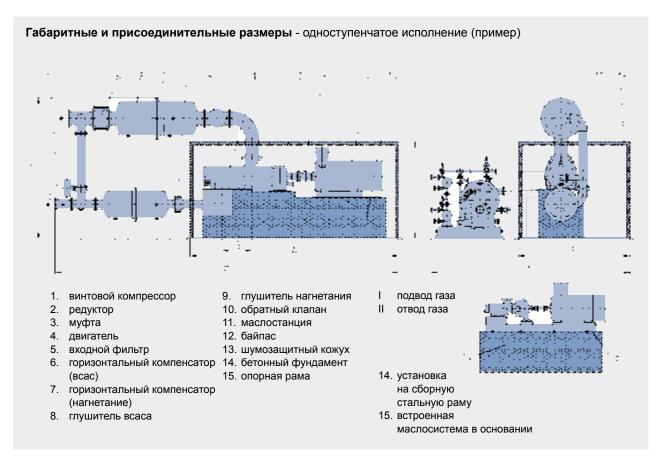
- Стандарты DIN / EC
- Стандарты NACE (Национальная ассоциация инженеров по коррозии)
- Регламенты AD
- Стандарты ТЕМА (Ассоциация изготовителей оборудования для турбин)
- Стандарты ASME (Американское сообщество инженеровмехаников)
- Стандарты АРІ (Американский нефтяной институт)

Soda Sanayi, г. Мерсин (Турция), установка сжатия отходящих газов печи обжига известняка VRO 836 L, объем всасывания 45 000 м3/ч, сжатие в диапазоне 0,85 - 3,5 бар (абс.). Гидроизолированное лабиринтное уплотнение с графитовыми кольцами.

ВОЗМОЖНОСТИ ОБОРУДОВАНИЯ - БЕЗ ЛИШНИХ СЛОВ. РАБОЧИЕ ХАРАКТЕРИСТИКИ.

Рабочие характеристики - одноступенчатое исполнение

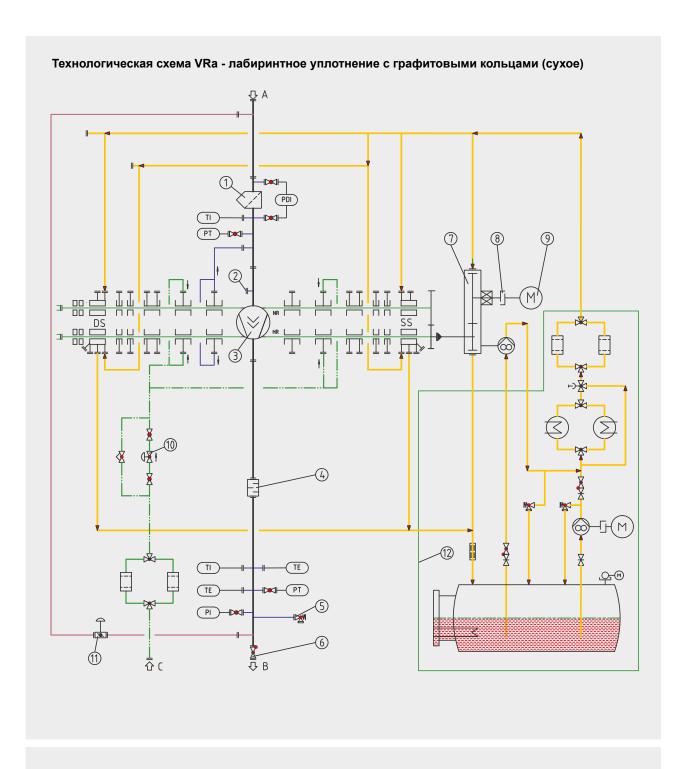
Типоразмер	Объемный расход, м³/ч (примерно)	Макс. перепад давления р _е , бар (примерно)	Макс. давление нагнетания, бар абс. (примерно)	
VRa 137 L	950 - 2200		16*	
VRa 337 L	2500 - 6000	16*		
VRa 437 L	3800 - 9000	16*		
VRa 537 L	6150 - 15600		10	
VRa 736 L	14000 - 27000		10	
VRa136 M	800 - 1600		25	
VRa 336 M	2000 - 3800		25	
VRa 436 M	3300 - 6600		25	
VRa 536 M	5000 - 10000	6	22	
VRa 736 M	12500 - 24000	0	12	
VRa 836 M	18900 - 49000		7	
VRa 936 M	29500 - 75000		7	
VRa 1037 M	46000- 120000		7	
VRa 136 S	550 - 1100		45	
VRa 236 S	800 - 1900		45	
VRa 336 S	1400 - 3200	40		
VRa 436 S	2150 - 5200	34		
VRa 536 S	3500 - 8800	19		
VRa 736 S	8500 - 15000		14	
VRa 236 H	750 -1650	25	53	
VRa 336 H	1320 - 2800	25	53	


Размеры, масса и рабочие характеристики даны для справки и не являются офертой.

Данные приведены ориентировочно для всех промышленных газов.

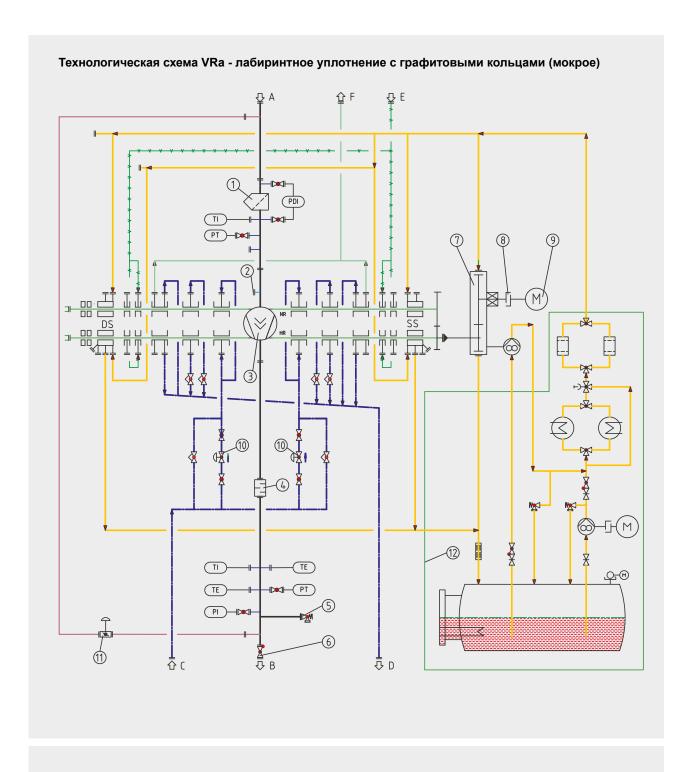
Условия на всасе: $p_1 = 1$ бар; $t_1 = 20$ °C.

Характеристики для режимов повышенного сжатия, давления нагнетания или разрежения предоставляются по запросу.


^{*}Повышенные значения перепада давления и давления нагнетания - по запросу.

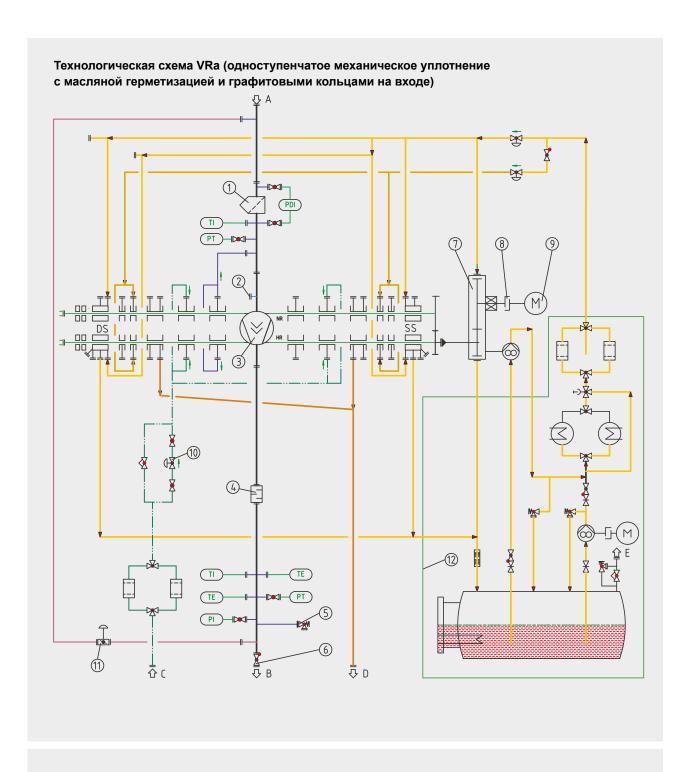
Размеры, масса и рабочие характеристики даны для справки и не являются офертой.

Тип								Ду	Ду	Масса,
компрессора	А	В	С	D	Е	F	G	(BCac)	(нагнетание)	кг
VRa 136 M/S	4400	6800	2600	3300	2500	4800	231	150	100	4000
VRa 137 L	4500	7000	2600	3300	2500	4800	336	150	100	4500
VRa 236 S/H	4700	7200	2800	3300	2800	5200	248	200	150	5000
VRa 336 M/S/H	4900	7500	3100	4000	3000	5800	310	250	150	6000
VRa 337 L	5100	7700	3100	4000	3000	5800	497	250	150	7500
VRa 436 M/S	5600	9800	3600	4200	3400	6200	430	300	200	10000
VRa 437 L	5800	10000	3600	4200	3400	6200	642	300	200	11500
VRa 536 M/S	6000	10200	3800	4400	4400	6800	635	400	250	16000
VRa 537 L	6300	10500	3800	4400	4400	6800	905	400	250	18500
VRa 736 M/S	7400	13600	4400	5200	5000	7000	830	600	400	26000
VRa 736 L	7800	14000	4400	5200	5000	7000	1236	600	400	27500
VRa 836 M	8400	16000	4800	6000	4000	7500	1352	800	500	42000
VRa 936 M	10000	18000	5200	7000	5300	8400	1660	900	600	55000
VRa 1037 M	12000	22000	6500	8000	7300	11000	2346	1400	1200	75000


Характеристики многоступенчатого исполнения предоставляются по запросу.

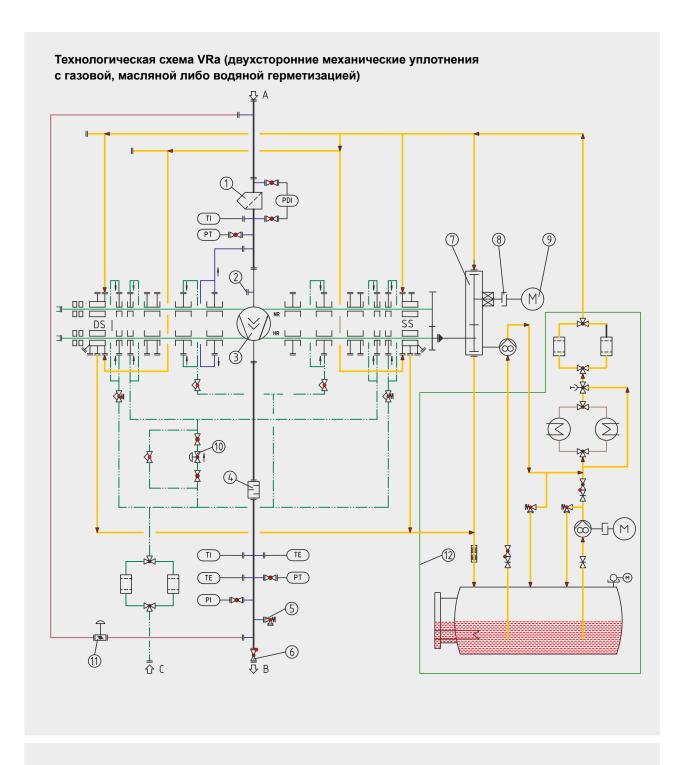
- 1. входной фильтр
- 2. подача воды
- 3. винтовой компрессор
- глушитель нагнетания
 предохранительный клапан
- 6. обратный клапан

- редуктор
 муфта
- 9. двигатель
- 10. регулятор уплотняющего газа
 11. обводной клапан
- 12. маслостанция

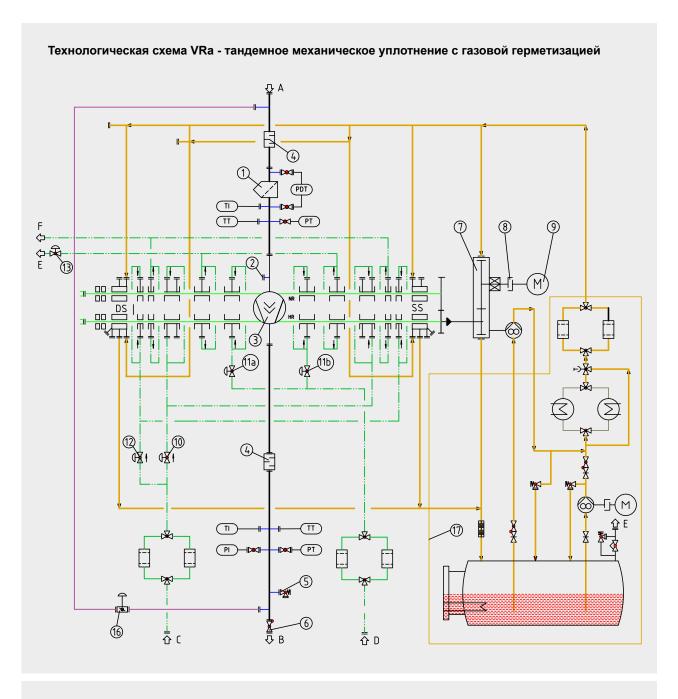

- А подвод газа
- отвод газа
- С точки подвода уплотняющего газа

- 1. входной фильтр
- 2. подача воды
- 3. винтовой компрессор
- 4. глушитель нагнетания
- 5. предохранительный клапан
- 6. обратный клапан

- редуктор
 муфта
- 9. двигатель
- регулятор уплотняющего газа
 обводной клапан
- 12. маслостанция


- подвод газа
- отвод газа
- С подвод уплотняющей воды
- D
- отвод уплотняющей воды подвод уплотняющего воздуха Ε
- F аэрация

- 1. входной фильтр
- 2. подача воды
- 3. винтовой компрессор
- 4. глушитель нагнетания
- 5. предохранительный клапан
- 6. обратный клапан


- 7. редуктор
- 8. муфта
- 9. двигатель
- 10. регулятор уплотняющего газа
- 11. обводной клапан
- 12. маслостанция

- А подвод газа
- В отвод газа
- С подвод уплотняющего газа
- D дренаж механического уплотнения
- E дыхательный клапан резервуара масла

- 1. входной фильтр
- 2. подача воды
- 3. винтовой компрессор
- глушитель нагнетания
 предохранительный клапан
- 6. обратный клапан
- редуктор
 муфта
- 9. двигатель
- 10. регулятор уплотняющего газа11. обводной клапан
- 12. маслостанция

- А подвод газа
- отвод газа
- С подвод уплотняющего газа

- 1. входной фильтр
- 2. подача воды
- 3. винтовой компрессор
- 4. глушитель нагнетания
- 5. предохранительный клапан
- 6. обратный клапан
- 7. редуктор
- 8. муфта

- 9. двигатель
- 10. регулятор уплотняющего газа
- 11. регулятор продувочного газа
- 12. регулятор разделяющего газа
- 13. редуктор давления счетчика факела
- 16. обводной клапан
- 17. маслостанция

- А подвод газа
- В отвод газа
- С подвод уплотняющего/ разделяющего газа
- D подвод продувочного газа
- Е факел
- F деаэрация / факел
- H дыхательный клапан резервуара масла

